19 research outputs found

    Exploration of sleep function connection and classification strategies based on sub-period sleep stages

    Get PDF
    BackgroundAs a medium for developing brain-computer interface systems, EEG signals are complex and difficult to identify due to their complexity, weakness, and differences between subjects. At present, most of the current research on sleep EEG signals are single-channel and dual-channel, ignoring the research on the relationship between different brain regions. Brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas.MethodsPhase-locked value (PLV) is used to construct a functional connection network. The connection network is used to analyze the connection mechanism and brain interaction in different sleep stages. Firstly, the entire EEG signal is divided into multiple sub-periods. Secondly, Phase-locked value is used for feature extraction on the sub-periods. Thirdly, the PLV of multiple sub-periods is used for feature fusion. Fourthly, the classification performance optimization strategy is used to discuss the impact of different frequency bands on sleep stage classification performance and to find the optimal frequency band. Finally, the brain function network is constructed by using the average value of the fusion features to analyze the interaction of brain regions in different frequency bands during sleep stages.ResultsThe experimental results have shown that when the number of sub-periods is 30, the α (8–13 Hz) frequency band has the best classification effect, The classification result after 10-fold cross-validation reaches 92.59%.ConclusionThe proposed algorithm has good sleep staging performance, which can effectively promote the development and application of an EEG sleep staging system

    Theoretical Studies on Two-Photon Fluorescent Hg2+ Probes Based on the Coumarin-Rhodamine System

    No full text
    The development of fluorescent sensors for Hg2+ has attracted much attention due to the well-known adverse effects of mercury on biological health. In the present work, the optical properties of two newly-synthesized Hg2+ chemosensors based on the coumarin-rhodamine system (named Pro1 and Pro2) were systematically investigated using time-dependent density functional theory. It is shown that Pro1 and Pro2 are effective ratiometric fluorescent Hg2+ probes, which recognize Hg2+ by Förster resonance energy transfer and through bond energy transfer mechanisms, respectively. To further understand the mechanisms of the two probes, we have developed an approach to predict the energy transfer rate between the donor and acceptor. Using this approach, it can be inferred that Pro1 has a six times higher energy transfer rate than Pro2. Thus the influence of spacer group between the donor and acceptor on the sensing performance of the probe is demonstrated. Specifically, two-photon absorption properties of these two probes are calculated. We have found that both probes show significant two-photon responses in the near-infrared light region. However, only the maximum two-photon absorption cross section of Pro1 is greatly enhanced with the presence of Hg2+, indicating that Pro1 can act as a potential two-photon excited fluorescent probe for Hg2+. The theoretical investigations would be helpful to build a relationship between the structure and the optical properties of the probes, providing information on the design of efficient two-photon fluorescent sensors that can be used for biological imaging of Hg2+ in vivo

    Theoretical Design of a Two-Photon Fluorescent Probe for Nitric Oxide with Enhanced Emission Induced by Photoninduced Electron Transfer

    No full text
    In the present work, we systematically investigate the sensing abilities of two recently literature-reported two-photon fluorescent NO probes, i.e., the o-phenylenediamine derivative of Nile Red and the p-phenylenediamine derivative of coumarin. The recognition mechanisms of these probes are studied by using the molecular orbital classifying method, which demonstrates the photoinduced electron transfer process. In addition, we have designed two new probes by swapping receptor units present on fluorophores, i.e., the p-phenylenediamine derivative of Nile Red and the o-phenylenediamine derivative of coumarin. However, it illustrates that only the latter has ability to function as off-on typed fluorescent probe for NO. More importantly, calculations on the two-photon absorption properties of the probes demonstrate that both receptor derivatives of coumarin possess larger TPA cross-sections than Nile Red derivatives, which makes a better two photon fluorescent probe. Our theoretical investigations reveal that the underlying mechanism satisfactorily explain the experimental results, providing a theoretical basis on the structure-property relationships which is beneficial to developing new two-photon fluorescent probes for NO

    The Effect of the Substituent Position on the Two-Photon Absorption Performances of Dibenzylideneacetone-Based Isomers

    No full text
    The two-photon absorption and optical limiting properties of two dibenzylideneacetone derivatives with different substituent positions have been theoretically investigated by solving the coupled rate equations-field intensity equation in the nanosecond time domain using an iterative predictor-corrector finite-difference time-domain method. The calculations show that the electronic structure, the transition dipole moment, the energy gap between the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO), and the pumping rate for the two molecules are quite different due to the different position of chlorine atoms. Importantly, two-photon absorption and optical limiting properties of the molecules depend crucially on the substituent positions of the terminal group, indicating that subtle manipulation on the molecule can affect the nonlinear optical properties of the medium

    Sensing Performance Investigations on Two-Photon Fluorescent Probes for Detecting β-Amyloid in Alzheimer’s Disease

    No full text
    Alzheimer’s disease (AD) is one of the most common forms of senile disease. In recent years, the incidence of AD has been increasing significantly with the acceleration of the aging process of the global population. However, current clinical drugs can only alleviate the symptoms of AD patients without healing the disease fundamentally. Therefore, it is of great significance to develop an effective small molecule diagnostic reagent for the early diagnosis of AD. In this paper, we employ an integrated approach, including molecular docking simulation and quantum mechanics/molecular mechanics calculation, to investigate the sensing performance of a series of donor–acceptor structural probes for the marker protein of AD (β-amyloid). Results show that the probes display evident fluorescence enhancement when bound to the β-amyloid, suggesting the effect of the environment on the molecular properties. Especially, the two-photon absorption cross-section of the probes increase drastically in the β-amyloid compared to that in vacuum, which results from the larger electron delocalization and dipole moment in the fibrillary-like environment. Thus, one can propose that the studied probes are capable of application in two-photon fluorescent imaging, particularly those containing naphthalene rings as the donor or with a longer spacer group. Our calculations elucidate the experimental measurements reasonably, and further establish possible structure–property relationships that can be used to design novel biocompatible two-photon fluorescent probes for the diagnosis of Alzheimer’s

    Conjugation Length Effect on TPA-Based Optical Limiting Performance of a Series of Ladder-Type Chromophores

    No full text
    Nonlinear optical properties of a series of newly-synthesized ladder-type chromophores containing oligo-p-phenylene moiety with different π-conjugated lengths were theoretically studied by numerically solving the rate equations and the field intensity equation with an iterative predictor-corrector finite-difference time-domain technique. Ab initio calculation results show that the compounds can be described by the three-level model. Based on the two-photon absorption mechanism, highly efficient optical limiting performances are demonstrated in the chromophores, which strongly depend on the π-conjugated length of the molecule. Special attention has been paid to the dynamical two-photon absorption, indicating that the parameter of the medium can affect the dynamical two-photon absorption cross section. Our numerical results agree well with the experimental measurements. It reveals that the increase in the π-conjugated length of ladder-type oligo-p-phenylene for these chromophores leads to enhanced nonlinear optical absorption. The results also provide a method to modulate the optical limiting and dynamical two-photon absorption of the compounds by changing the molecular density and thickness of the absorber

    Versatile Dicyanomethylene-Based Fluorescent Probes for the Detection of β-Amyloid in Alzheimer’s Disease: A Theoretical Perspective

    No full text
    Motivated by the growing demand for target chemosensors designed with diagnostic or therapeutic capability for fibrils related to amyloidosis diseases, we investigated in the present work the response mechanism of dicyanomethylene-based fluorescent probes for amyloid fibril using a combined approach, including molecular docking, quantum mechanics/molecular mechanics (QM/MM), and the quantum chemical method. Various binding modes for the probes in β-amyloid (Aβ) are discussed, and the fibril environment-induced molecular optical changes at the most stable site are compared to the fibril-free situation in aqueous environments. The results reveal that the fluorescence enhancement for the probes in Aβ observed experimentally is an average consequence over multiple binding sites. In particular, the conformational difference, including conjugation length and donor effect, significantly contributes to the optical property of the studied probes both in water and fibril. To further estimate the transition nature of the molecular photoabsorption and photoemission processes, the hole-electron distribution and the structural variation on the first excited state of the probes are investigated in detail. On the basis of the calculations, structure–property relationships for the studied chemosensors are established. Our computational approach with the ability to elucidate the available experimental results can be used for designing novel molecular probes with applications to Aβ imaging and the early diagnosis of Alzheimer’s disease
    corecore